Skip to content

Linking Marine Carbon and Alkalinity Cycles


Our state-of-the-art laboratory at Woods Hole Oceanographic Institution focuses on marine organisms that grow shells in the ocean, and their relationship to the marine carbon and alkalinity cycles. We conduct experiments and make measurements in the lab and in the field, using a combination of novel instrumentation and innovative approaches to traditional carbonate chemistry measurements.

** Environmental research is social justice research. Ocean research is social justice research.   I am committed to making my lab a welcoming, inclusive space for Black and other underrepresented minority people of all genders and sexual orientations.  Please do not hesitate to reach out if you want to get engaged, or want to know more about how I am engaging with equity, justice, and inclusion issues at WHOI. **

Calcium carbonate saturometry

Biogenic calcium carbonate solubilities through novel lab and field experiments

Marine Viruses and Carbon Export

Exploring the relationship between viral infection and coccolithophore carbon export

ocean alkalinity enhancement

Ocean alkalinity enhancement is an approach to store anthropogenic CO2 emissions safely and permanently in seawater.

Recent Publications

ˆ indicates student first-author; ° indicates postdoc first author

Jiang, L.Q., Gattuso, J.P., Subhas, A.V. Data reporting and sharing. Chapter 7 in the Best Practices Guide for Ocean Alkalinity Enhancement. Under review. 

Subhas, A.V., Lehmann, N., Gagnon, A., Rickaby, R.E.M. Natural Analogs for Ocean Alkalinity Enhancement. Chapter 4.2 in the Best Practices Guide for Ocean Alkalinity Enhancement Research. Under review. 

Hashim, M.S.°, Subhas, A.V., Naa, G.W., Kaczmarek, S.E., Bish, D. A process-based diagenetic framework for shallow-marine carbonate sediments. Submitted to Proceedings of the National Academy of Sciences.

Mete, O.Z.ˆ, Subhas, A.V., Kim, H.H., Dunlea, A.G., Whitmore, L.M., Shiller, A.M., Leavitt, W.D., Horner, T.J. Barium in seawater: Dissolved distribution, relationship to silicon, and barite saturation state determined using machine learning. In revision at Earth System Science Data. Preprint available at doi: 10.5194/essd-2023-67

Bekaert, D. V.°, Barry, P. H., Broadley, M. W., Byrne, D. J., Marty, B., Ramírez, C. J., de Moor, J.M., Rodriguez, A., Hudak, M.R., Subhas, A.V., Halldorsson, S.A., Stefansson, A., Caracausi, A., Lloyd, K.A., Giovanelli, D., Seltzer, A. M. (2023). Ultrahigh-precision noble gas isotope analyses reveal pervasive subsurface fractionation in hydrothermal systems. Science Advances, 9(15), eadg2566. doi: 10.1126/sciadv.adg2566 

Ziveri, P., Gray, W. R., Anglada-Ortiz, G., Manno, C., Grelaud, M., Incarbona, A., Rae, J.W.B., Subhas, A.V., Pallacks, S., White, A., Adkins, J.F., Berelson, W. (2023). Pelagic calcium carbonate production and shallow dissolution in the North Pacific Ocean. Nature Communications, 14(1), 805. doi: 10.1038/s41467-023-36177-w 

Subhas, A. V., Pavia, F. J., Dong, S., & Lam, P. J. (2023). Global Trends in the Distribution of Biogenic Minerals in the Ocean. Journal of Geophysical Research: Oceans, 128(2). doi: 10.1029/2022jc019470

Subhas, A.V., Marx, L., Reynolds, S., Flohr, A., Mawji, E., Brown, P., and Cael., B.B., 2022: Microbial Ecosystem Responses to Alkalinity Enhancement in the North Atlantic Subtropical Gyre.  Frontiers in Climate: Negative Emissions Technologies, 4, 784997. doi: 10.3389/fclim.2022.784997.

Steiner, Z., Rae, J.W.B., Berelson, W.M., Adkins, J.F., Hou, Y., Dong, S., Lampronti, G.I., Liu, X., Achterberg, E.P., Subhas, A.V., Turchyn, A.V., 2022: Authigenic formation of clay minerals in the abyssal North Pacific. Global Biogeochemical Cycles., 36(11), e2021GB007270.

Kellogg, R. M.ˆ, Moosburner, M. A., Cohen, N. R., Hawco, N. J., McIlvin, M. R., Moran, D. M., DiTullio, G.R., Subhas, A.V., Allen, A.E., Saito, M. A. (2022). Adaptive responses of marine diatoms to zinc scarcity and ecological implications. Nature Communications, 13(1), 1995.

Kellogg, R.M.ˆ, Moran, D.M., McIlvin, M.R., Subhas, A.V., Allen, A.E., Saito, M.A., 2022: Lack of a Zn/Co substitution ability in the polar diatom Chaetoceros neogracile RS19. Limnology and Oceanography, 67(10), 2265-2280. doi: 10.1002/lno.12201.

Subhas, A.V., Dong S., Naviaux, J.D., Rollins, N.E., Ziveri, P., Gray, W.R., Rae, J.W.B., Liu, X., Byrne, R.H., Chen, S., Moore, C., Martell-Bonet, L., Steiner, Z., Antler, G., Hu, H., Lunstrum, A., Hou, Y., Kemnitz, N., Stutsman, J., Pallacks, S., Dugenne, M., Quay, P.D., Berelson, W.M., Adkins, J.F., 2022: Shallow Calcium Carbonate Cycling in the North Pacific Ocean. Global Biogeochemical Cycles., 36, e2022GB007388.

Dong, S., Wang, X.T., Subhas, A.V., Pavia, F.J., Berelson, W.M., Adkins, J.F., 2022: Suspended carbon and nitrogen along a North Pacific transect: concentrations, isotopes, and C/N ratios. Limnology and Oceanography 67(1), 247-260.

Adkins, J.F., Naviaux, J.N., Subhas, A.V., Dong, S., and Berelson, W.M., 2021: The Dissolution Rate of CaCO3 in the Ocean. Annual Review of Marine Science, 13, 57-80.

Subhas, A.V., McCorkle, D.C., McNichol, A.P., Quizon, A., and Long, M.H., 2019: Selective Preservation of Coccolith Calcite in Ontong-Java Plateau Sediments. Paleoceanography and Paleoclimatology, 34(12).

Naviaux, J.D., Subhas, A.V., Dong, S., Rollins, N.E., Liu, X., Berelson, W.M., Adkins, J.F., and Byrne, R.H., 2019: Calcite Dissolution Rates in Seawater: Lab vs. In Situ Measurements and Inhibition by Organic Matter. Marine Chemistry, 215, 103684.

Subhas, A.V., Berelson, W.M., Dong, S., Rollins, N.E., Adkins, J.F., 2019: The Carbonic Anhydrase Activity of Sinking and Suspended Particles in the North Pacific Ocean. In press at Limnology and Oceanography.